Glossary
Fusion Splice
A Splice accomplished by the application of localized heat sufficient to fuse or melt the ends of two lengths of optical fiber, forming a continuous single fiber.
The process of Fusion Splicing involves using localized heat to melt or fuse the ends of two optical fibers together. The Splicing process begins by preparing each Fiber end for fusion. Fusion splicing requires that all protective coatings be removed from the ends of each fiber. The fiber is then cleaved using the score-and-break method. The quality of each fiber end is inspected using a microscope. In fusion splicing, splice Loss is a direct function of the angles and quality of the two fiber-end faces.
The basic fusion splicing apparatus consists of two fixtures on which the fibers are mounted and two electrodes. inspection microscope assists in the placement of the prepared fiber ends into a fusion-splicing apparatus. The fibers are placed into the apparatus, aligned, and then fused together. Initially, fusion splicing used nichrome wire as the heating element to melt or fuse fibers together. New fusion-splicing techniques have replaced the nichrome wire with carbon dioxide (CO2) lasers, electric arcs, or gas flames to heat the fiber ends, causing them to fuse together. The small size of the fusion splice and the development of automated fusion-splicing machines have made electric arc fusion (arc fusion) one of the most popular splicing techniques in commercial applications.